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to calculate the transfer coefficient a. Since the reduction process 
proved to be a catalytic one, only high-frequency measurements 
were used to calculate A:s, a frequency region where kc » a> does 
not apply. Looking on the heterogeneous rate constant data (Table 
II), there are two phenomena to notice. ks increases with de
creasing number of p-Br-bzac ligands, within a single n value, when 
the complex is less sterically hindered. 

Decreasing the number of p-Br-bzac ligands in a complex causes 
less steric hindrance, when a molecule is reduced at the mercury 
solution interface. This also reduces the quasiaromatic stabilization 
of the /3-diketonate-metal ring and thus leads to a higher ks value. 
However, there is an exception to this general trend, since the trans 
isomer (A) when n = 3 has a larger ks value than all of the isomers 
with n = 2. As was true for the separation of the compounds, 
the number of p-Br-bzac ligands is not the only major factor 
influencing separation but also is important in the relative position 
of the phenyl rings. The ks values of the trans isomer (A, n = 
3) and the trans-cis isomer (B, n = 2) are similar, 0.0703 ± 0.0130 
and 0.0674 ± 0.0215 cm/s, respectively. They are the only two 
isomes which have two phenyl rings in trans positions and thus 
allow the molecule being reduced to come closer to the mercury 
electrode, resulting in a higher ks value. Within a single value 
of n, the variations in ks are in accordance with the predicted 
behavior of these complexes, based on steric effects. When n = 
3, the trans isomer has higher ks than has the cis, 0.0703 ± 0.0130 
and 0.0220 ± 0.0580 cm/s, respectively. From Figure 1 it can 
be seen that the trans isomer (A) has an open site between the 
trans phenyl rings, which does not exist in the symmetrical cis 
isomer (C), and this allows closer access to the electrode surface, 
resulting in a larger ks value for isomer A. For n = 2 the largest 

(29) Smith, D. E. In "Electroanalytical Chemistry"; Bard, A. J., Ed.; 
Marcel Dekker: New York, 1966; Vol. 1, pp 1-155. 

(30) Jannakoudakis, A. D.; Tsiamis, C; Jannakoudakis, P. D.; Theodor-
idou, E. J. Electroanal. Chem. 1985, 184, 123. 

By now it is clear that the density functional description1 of 
many-electron systems provides a highly useful framework for 
rigorous quantitative definition of important concepts in chemistry 
and schemes for their calculation as well. In the present paper 

^ On leave from Heavy Water Division, Bhabha Atomic Research Centre, 
Bombay 400 085, India. 

ks is for the trans-cis isomer (B) again for the same reason of 
having two phenyl rings at a trans position. According to these 
results the isomers which have two phenyl rings in a trans position 
have a larger fes value than those who do not. Even though isomer 
D (cis-trans isomer n = 2) appears to be less sterically hindered, 
it does not have phenyl rings in a trans position and it has a lower 
ks value than the trans.cis isomer (B). This strongly implies that 
the relative trans position has more influence than only the steric 
hindrance. This phenomenon is under investigation. 

Of significant importance is an inductive effect which clearly 
shows in the E1//2 values for the various complexes (Table II). A 
replacement of one acac ligand by one p-Br-bzac ligand results 
in a positive shift of £1/2 by 72—118 mV on an average. We believe 
that this positive shift is due to the presence of the bromine in 
the phenyl ring. This assumption is currently being investigated 
in a similar series of complexes where the p-Br-bzac ligand is 
replaced by 1-phenyl-1,3-butanedione (benzoylacetone, bzac). The 
relative trans position of two phenyl rings has an effect also on 
the Ey2 values. It is clear from the data presented that complex 
B which has two phenyl groups in a trans position has an E[/2 

value of 0.247 mV which is much closer to that of complex A 
[trans-Co(p-Br-bzac)3], 0.267 mV, than to that of the other 
complexes with n = 2, .which are reduced at 0.201 and 0.183 mV. 

We have shown here a good correlation between the structure 
of the specific isomers, their behavior in separation, and hetero
geneous rate constants for electron transfer. We were able to get 
a more detailed picture for the reduction mechanism than what 
was obtained previously. 
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we show how this language includes the idea that different par
ticular places in an atom or molecule can be "hard" or "soft"—the 
concept of local or site hardness. 

Two properties of a molecule as a whole, global rather than 
local, are its electronegativity x and hardness r;. These may be 

(1) Parr, R. G. Annu. Rev. Phys. Chem. 1983, 34, 631-656. 
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Abstract: Density functional theory is shown to provide a natural definition for a local atomic or molecular property called 
the local hardness, 

1 C 52^W 
27V J 5p(T)5p(r') 

Weighted by the Fukui function/(f) of Parr and Yang and integrated over all space this gives the global absolute hardness 
V = '/2 (A2EZdN2), of Parr and Pearson 

v = fmm df 
The corresponding integral over a portion of a molecule gives a regional or group hardness. Various properties and identities 
involving local hardness are discussed, and it is shown that local hardness constitutes a generalization of the classical electrostatic 
potential due to an electron distribution. 
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defined as the first and second derivatives of the total electronic 
energy E with respect to the number of electrons N, 

X - HdE/dN)v (1) 

r, = Y2(VEZdN2X, (2) 

where v is the external (nuclear) potential. These formulas are 
due to Iczkowski and Margrave2 and Parr and Pearson,3 re
spectively. Density functional theory also identifies electroneg
ativity with the negative of the chemical potential p of the elec
tronic cloud4 

H = - x = (dE/dN), (3) 

and the thermodynamic-like attributes of the electronegativity 
concept are thereby rigorously confirmed. The hardness concept 
of eq 2 explains the widely used but otherwise empirical fact that 
for acids and bases "hard likes hard" and "soft likes soft".3,5,6 For 
the hardness we have 

2V = (dp/dN)v (4) 

Hardness measures the sensitivity of the electronegativity to change 
in the number of electrons. Here and throughout this paper the 
discussion is confined to ground states. 

The characterization of a molecule solely by a set of global 
quantities excludes the possibility of predicting the preferential 
site for a chemical reaction, and so the description of chemical 
reactivity by density functional theory demands the introduction 
of local quantities. One important such quantity is the frontier 
or Fukui function,7'8 given by 

/(F) = 
Sp 

Sv(Jf) 
1 = I" 3p(?) 1 
Ll dN I 

(5) 

where p(f) is the electron density. From the successes of the 
frontier electron theories of chemical reactivity,9 it follows that 
/(f) is a useful reactivity index for early stages of a chemical 
reaction. Below we examine another quantitative local concept 
in density functional theory, the local hardness 5; (F), and we show 
how this concept validates describing a molecule as a collection 
of hard or soft functional groups. 

Local Hardness 
We begin with the fundamental equations of density functional 

theory. All molecular properties are functionals of p; in particular, 
the energy is given by 

(6) E[p] = jv(r)p(r) df + F[p] 

with 

F[p] = T[p] + VK[p] (7) 

in which T[p] is the electronic kinetic energy and Kee[p] is the 
electron-electron repulsion energy. Furthermore, minimization 
of E[p] subject to the condition that the number of electrons is 
a given N value 

TV = N[p] = Cp(T) dr (8) 

gives the density and energy for the ground state, for a system 
defined by N and v. This minimization is tantamount to solving 
the Euler equation 

(2) Iczkowski, R. P.; Margrave, J. L. J. Am. Chem. Soc. 1961, 83, 
3547-3551. Compare 139 of the following: Pritchard, H. O.; Sumner, F. H. 
Proc. R. Soc. London 1956, A235, 136-143. 

(3) Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983,105, 7512-7516. 
(4) Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 

1978, 68, 3801-3807. 
(5) Pearson, R. G. "Hard and Soft Acids and Bases"; Dowden, Hutchinson 

and Ross: Stroudsberg, PA, 1973. 
(6) Nalewajski, R. F. J. Am. Chem. Soc. 1984, 106, 944-945. 
(7) Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049-4050. 
(8) Yang, W.; Parr, R. G.; Pucci, R. J. Chem. Phys. 1984, 81, 2862-2863. 
(9) Fukui, K. "Theory of Orientation and Stereoselection"; Springer-

Verlag: Berlin, 1973; p 134. Fukui, K. Science (Washington, D.C.) 1982, 
218, 747-754. 

p = V(T) + 
SF[p] 

Sp(X) 
(9) 

The chemical potential p. is constant through the whole system, 
a molecular property p[N,v], 

For the change of one ground state to another, 

and 

AE = p AN + Jp(T) dv(r) df 

dp = 2r,dN+ ff(r) du(f) dr 

(10) 

( H ) 

where p, ri, and/(f) are given by eq 3, 4, and 5. The quantities 
P and r), like E, are global quantities (numbers); f(f), like p(f), 
is a local quantity (function of position). 

Also, as already was pointed out some time ago,4 

d(S-tfM)-d[/-- Jf^P(T) dr'] = 

SS d2F[p] 

5p(f)6p(T') 
— dp(T)p(T') dr dr ' (12) 

Here is where local hardness comes in. Following Ghosh and 
Berkowitz,10 we define 

W) = 27V J 
S2F[p] 

Sp(T)Sp(T') ~P<?) d?' (13) 

and find 

d(£ - Np) = -2NJ"TI(T) dp(f) dr (14) 

r)(r) is the local hardness, a function of position. Eliminating dE 
from eq 10 and 14, we obtain 

dp = 2Jr1(T) dp(T) dr + jjfp(?) dv(Y) df (15) 

This is the "local" counterpart of eq 11 in the sense of Nalewajski,'' 
in which there now appears the local hardness in place of the global 
hardness. Similarly, eq 10 has the counterpart 

dE = Jp dp(r) dr + J*p(r) di>(r) dr (16) 

but this is not so interesting as eq 15. 
From eq 15 we find another formula for f/(r), 

-1[«1 (17) 

Also, from eq 15 and eq 5 we obtain 

V= f v(r)/(T)AT (18) 

These equations show how hardness can be computed by density 
functional theory. Finite difference approximations to eq 17 and 
18 are easily constructed. 

Identities Involving Local Hardness 
Taking the gradient of eq 9, multiplying by p(f), and integrating 

over all space gives 

2N^f)(T)Vp(T) df + Jp(T)W(T) df = 0 (19) 

But Levy and Perdew12 have shown that Jp(F)Vi.'^) df = 0. 
Hence 

Jr1(T)Vp(T) df = 0 (20) 

This is a simple but important condition on ?j, which would be 
sensible to impose on approximations to f\. For example, one might 

(10) Ghosh, S. K.; Berkowitz, M. J. Chem. Phys. 1985, 83, 2976-2983. 
(11) Nalewajski, R. F. J. Phys. Chem. 1985, 89, 2831-2837. 
(12) Levy, M.; Perdew, J. P. Phys. Rev. A 1985, A32, 2010-2021. 
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try imposing a local version of eq 19, 

2Nv(T)Vp(r) + p(F)Vv(F) = 0 

one obtains 

(21) 

Note, however, that this condition is not satisfied by Thomas-
Fermi theory. 

To obtain another identity, proceed as follows. From eq 10 
and 11 one has d(£ - Nn) = J"[p(r) - Nf[I)] du(r) dr - 2Nv d/V, 
which one may equate to eq 14: 

J [p(F) - Nf(T)] dv(j) dr = -27V Jf)(r) dp(F) df + 2r>N dN 

(22) 

Now write 

dp(F)=/(F)diV + f{W>),T (23) 

substitute in eq 22, and use eq 18. There follows 

Jp(J) du(r) dr = 

N Jf(T) Av(T) df - 2 JVjVr ) ( ^ J dv(i') dr dr' (24) 

In more detail, from the perturbation formula 

\8V(T'))N \ SV(T)JN 

one finds 

Jp(F) du(f) dr = d£|jv = 

NJf(T) dv(r) dr - 47V Re J E ' 

2 R e E 
k 

,Pko*(f)pok(r') 

E,-En 
(25) 

<*o|di#t> WoIWt) I 
(26) 

This fascinating formula expresses the Hellman-Feynman force 
in terms of a force acting on/(f) plus terms, often small, involving 
products of matrix elements of a perturbation dv with matrix 
elements of the local hardness r). 

Calculation of Local Hardness. Relationship to Classical 
Electrostatic Potential 

We here do not go into full detail as ,to how 5j(f) can be cal
culated for particular species (though that is of much interest). 
It can be done, though since no exact method is yet known to 
calculate F[p], approximations are necessary. 

If in eq 7 we break Vx[p] into its classical and nonclassical parts, 
and write 

where 

F[p] = T[p] + J[p) - K[p] 

m 1 T fMr)p(fO 
J[p] = 2j J T^rdrdr 

(27) 

(28) 

and K[p] is the rest of Vce, then the local hardness becomes the 
sum of three terms, 

Here 

2N J Sp(j. 

TI(T) = 5jT(f) + 5jj(f) + 5jK(f) 

S2JlP] 

(29) 

) W ) 
K P(T) df = 

2NJ |r - f'| PK ' 2/V 
4>(T) (30) 

where 4>(r) is the classical electrostatic potential at F due to the 
entire electron density. 

The quantity rjT(f) can be examined, for example, using the 
Thomas-Fermi model. Thus, using 

T[p] = Q J P ( F ) 5 / 3 dF; CK = 3/10(37r2)2/3 (31) 

Ur) - ^ C K ^ p ( F ) ^ (32) 

5?K(?) = icA(F)>/ 3 ; Cx = - -^(3^)>/3 (33) 

Similarly the local density approximation to the exchange con
tribution K[p] would yield 

2iV~A9 r 'v ' ' ' " A 4irv 

Alternatively, one can use the Kohn-Sham theory13 where, 
instead of eq 27, one writes F[p] in terms of the noninteracting 
kinetic energy Ts[p] and the exchange-correlation contribution, 
namely, 

F[p] = T,[p] + J[p] + £xc[p] (34) 

Using the expression of Ts in terms of the orbital densities Jp1-J, 
i.e., 

Ts[p] = r E I dr 
8 ( J Pi 

(35) 

< = ) ) 
(36) 

we find in Kohn-Sham theory 

_ J_( (VPH-VPH)P (VPH-VP) 

where pH denotes the HOMO density. The exchange-correlation 
contribution can be evaluated by using, e.g., the local density 
approximation.1 

It is clear from the Thomas-Fermi result that because of ex
ponential fall-off of the density in the outer regions of an atom 
or molecule, the principal part of 5j(F) is 0(F) 

W) =* ^V<M?) (37) 

in outer regions. The same conclusion also follows from the local 
density version of the Kohn-Sham theory if one makes the rea
sonable assumption that in the outer regions the total density is 
dominated by the HOMO density. 

Thus we have in the local hardness a concept that is a gener
alization of the concept of classical electrostatic potential. 

Final Remarks 
We accept the arguments in the literature as to why the global 

r\ of eq 2 or eq 4 should be called "hardness".3,6 But we should 
ask: how can we be sure that the right name for the local quantity 
r) of eq 13 or eq 17 is local "hardness"? The answer is in eq 17 
itself. For a small element of volume, eq 17 is what eq 2 is for 
a large volume. A formula from the classical thermodynamics 
of a one-component homogeneous system may help make this 
clear, namely, 

or equivalently 

/ dp_\ = ^ ( d P \ 

\dNjTy N2XdV)Tj 

'(T) -1 

\6p / jy PK 

(38) 

(39) 

where K is the compressibility. Local hardness, then, is in effect 
the reciprocal of a local compressibility. A related concept, local 
softness, is discussed elsewhere.14 

A subtlety in the hardness concept exists that has not yet been 
mentioned but should be; there is a discontinuity in the derivative 
of a hardness just as there is for a chemical potential15 or for the 
Fukui function.7 When an electron is being added, one has p+ , 

(13) Kohn, W.; Sham, L. J. Phs. Rev. 1965, 140, A1133-A1138. 
(14) Yang, W.; Parr, R. G. Proc. Natl. Acad. ScL U.S.A. 1985, 82, 

6723-6726. 
(15) Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Jr. Phys. Rev. Lett. 

1982, 49, 1691-1694. 



6814 / . Am. Chem. Soc. 1985, 107, 6814-6818 

/""(?), T)+, v+{r); when it is being subtracted one has n~,f~(r), rf, 
T)-Cr). One also has the averages n°,f(T), TJ°, ^°(r). 

Extension of the local or point hardness to a regional or group 
hardness is immediate and provides the means for evaluating the 
hardness of a particular atom in a molecule, some group, or any 
specified region. We merely break eq 18 into regional components: 

V = Zv0 (40) 
a 

Vu= f ?;(?)/(?) dr (41) 

Equation 41 admits of calculation as desired. 
It may be mentioned that eq 41 is a different definition of 

regional hardness than the one implied by the approach of Bader 
and colleagues,16 who speculate that the hard-soft behavior can 

(16) Bader, R. F. W.; MacDougall, P. J.; Lau, C. D. H. J. Am. Chem. Soc. 
1984, 106, 1594-1605. 

The fulvenes long have been a focus of interest as prototypes 
of cyclic, cross-conjugated molecules and because of their unique 
properties.1 The electronic spectra of most fulvenes show tran
sitions in the visible region as a result of a small HOMO-LUMO 
gap.2 The comparatively large dipole moments of the parent 
molecule (0.42 D)3 and simple derivatives (1.44 D for 6,6-di-
methylfulvene)4 attest to the importance of zwitterionic character 
in the ground state. The dipole moment can be understood as 

(1) Bergmann, E. D. Chem. Rev. 1968, 68, 41-84. Yates, P. Adv. Alicycl. 
Chem. 1968, 2, 59-184. 

(2) Houk, K. N.; George, J. K.; Duke, R. E., Jr. Tetrahedron 1974, 30, 
523-533. Lo, D. H.; Whitehead, M. A. Tetrahedron 1969, 25, 2615-2631. 

(3) Baron, P. A.; Brown, R. D.; Burden, F. R.; Domaille, P. J.; Kent, J. 
E. J. MoI. Spectrosc. 1972, 43, 401-410. 

(4) Thiec, J.; Wiemann, J. Bull. Soc. Chim. Fr. 1958, 207-211. Kerber, 
R. C; Linde, H. G. J. Org. Chem. 1966, 31, 4321-4322. 

be rationalized from the properties of the Laplacian V2p. They 
characterize a hard site in a molecule by the appearance of a large 
maximum (minimum) of V2p which is tightly bound (occurs at 
small r); and they ascribe the soft behavior to a site with opposite 
characteristics. They then state the hope that chemical reactions 
can be predicted on the basis of "hard maxima reacting with hard 
holes and soft maxima with soft holes". 

Generally, then, each atom has its own effective hardness in 
a molecule (whereas electronegativities of all atoms are the same). 
While a detailed discussion along these lines remains to be given, 
we may confidently expect, in accordance with the extended HSAB 
principle,5 that a hard reactant will generally attack the hardest 
part of the partner, and similarly soft will prefer soft. Calculated 
group hardnesses should allow prediction of site selectivity in 
chemical reactions. 
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resulting from intramolecular charge transfer from the exocyclic 
double bond to the five-membered ring thereby acquiring pseu-
doaromatic cyclopentadienide character. Substituents can affect 
the degree of zwitterionic character, and such perturbations 
manifest themselves as shielding effects in NMR spectra.5 

Furthermore, substituents which reinforce the zwitterionic 
structure, i.e. electron-releasing groups at C6 and/or electron-
accepting groups on the ring, stabilize the fulvene and reduce its 
tendency for dimerization, polymerization, and oxygenation.1 

We were attracted to the fulvenes as potential precursors of 
nonvertical radical cations, a concept we have introduced recently.6 

(5) (a) Pines, A.; Rabinowitz, M. J. Chem. Soc. B 1971, 385-388; (b) 
Hollenstein, R.; Philipsborn, W. v.; Vogeli, R.; Neuenschwander, M. HeIv. 
Chim. Acta 1973, 56, 847-860. (c) Knothe, L.; Prinzbach, H.; Fritz, H. 
Liebigs Ann. Chem. 1977, 687-708. 
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Abstract: The reactions of several fulvene derivatives with photoexcited electron acceptors (chloranil, anthraquinone) give 
rise to strong nuclear spin polarization effects. These results offer insight into the structures of the radical cation intermediates. 
For all systems studied, the spin density is restricted to the ring carbons. Electron-donating substituents in the exomethylene 
position affect the delocalization of the positive charge and the strength of the exocyclic bond in the radical cations. For example, 
the (Z)- and (£')-2-?err-butyl-6-(dimethylamino)fulvene radical cations rearrange readily, whereas the di-tert-butylfulvene 

radical cations show no interconversion. The results are compatible with either planar or slightly twisted radical cations and 
preclude the intermediacy of perpendicular radical cations. 
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